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SOUND PROPAGATION THROUGH A MODERATE COASTAL UPWELLING: COMPARISON
OF MODELING PREDICTION WITH EXPERIMENTAL DATA

General Areas of World Upwelling

N ’

Slide 1

It is well known that prevailing winds determine the circulation pattern
in the oceans. However, the wind is also responsible for another ocean phenom-
enon, called upwelling. As the name implies, deep water, which is generally
colder, is upwelled to the surface.

Known areas of upwelling in the world's oceans are shown in slide 1. The
upwelled cold water is rich in nutrients, hence these locations tend to be
prime fishing grounds. As you can see, many upwelling regions occur along
continental margins and are specifically called coastal upwellings. Of par-
ticular interest is the upwelling along the California coast.

An upwelling of cold water is going to change the temperature of the
water column. That will change the sound-speed profile, which will result in
a change in the underwater sound-propagation conditions, which is why we are
interested in upwellings.
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""3 Slide 2
A coastal upwelling is formed when the surface wind is blowing parallel
“i‘ to the coast in such a way that the Coriolis force is acting away from the
"gg shore. For the west coast of North America, this would be a northerly wind.
{!gj, - As you see it in 'slide 2, the wind is blowing down the coast. This results in
-.’§ a transport of surface water away from the coast, and the deeper colder water
e d must upwell to fill this void.
™
N Unlike the case of major ocean currents, this process does not have great f
238 momentum so it can vary relatively quickly with time as the wind changes. Gen-
by erally, these coastal upwellings are occurring where there is a significant
’5 slope to the bottom which, of course, can be an important factor in sound pro- 1
?g pagation.
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i Slide 3
Slide 3 is a satellite image of a classic upwelling development along the
< California coast. The colder water is shown by the lighter shades. Weather
" information is overlaid. Streamlines indicate the wind flow, which you can
o see is northerly down the coast. This is caused by the clockwise circulation
| about the high offshore.
Py
m There is a general upwelling along the coast from Cape Mendocino to Point
gﬁ Sur. Note that there are apparently several favored locations indicated by
> the out-streaming of a filament-like upwelling plume. Such a plume occurs at
I Point Sur and it is this particular location that is of interest to us.
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Coastal Upwelling Plume Observed
Off Pt Sur, Calif. on 1 May, 1979
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LINE FROM POINT A TO POINT B INDICATES DIRECTION OF ACOUSTIC
PATH UNDER INVESTIGATION.

Slide 4
For several years, Professor Traganza and others at the Naval Postgrad-
uate School have studied the oceanographic properties of the upwelling region

off the coast of California at Point Sur.

Temperature contours are shown in slide 4 for the upwelling in a fully
developed state. The core of coldest water is quite localized and occurs at

the end of an underwater canyon, which may facilitate the influx of cold water.

We have selected the track A-B, running parallel to the coast and through
the upwelling core, for acoustic modeling based on the temperature data. The
ray diagrams that follow will have the receiver located at A.
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1979 Strong Upweliling — Single Profile
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Slide 5

First, we used only a single sound-speed profile, located at A; so we
could determine the general propagation conditions, especially the effect of
the sloping bottom. '

For practical reasons, we chose a receiver depth of 100 m for this ini-
tial study. The resulting ray diagram is shown in slide 5. We have chosen to
use ray diagrams so that we can see how the energy is distributed throughout
the water column. We don't know the bottom properties well enough to really
trust absolute level predictions.

For these conditions, all rays shown interact with the bottom. Of par-
ticular interest will be the limiting ray, which strikes the bottom at a range
of approximately 11.5 nmi. The corresponding reflected ray has not reached
the surface as it passes off scale at 15 nmi.
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1979 Strong Upwelling — Multiple Profiles
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Slide 6

We now introduce the effect of the upwelling, slide 6, by running the
model again with a series of sound-speed profiles, representing the range-de-
pendent cross section of the upwelling along the track.

In general, the ray pattern is quite similar to the single-profile case.
Note again, however, the limiting ray, which strikes the bottom at a range of
10 nmi, rather than 11.5 nmi. Since this is a region of rapidly changing
bottom slope, the reflected angle is changed even more, with the resulting
rays reaching the surface at a range now of 13.5 nmi. In this particular
case, the bottom slope acts to enhance the effect of the upwelling on acoustic
propagation.
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Upwelling Experiment Sept 1981

Slide 7

In September of last year, we conducted an experiment to measure sound
propagation through this upwelling. After an oceanographic survey to deter-
mine the state of the upwelling at this time (which we found to be weakly
developed), we had a P-3 aircraft drop a calibrated sonobuoy pattern, shown by
the black dots in slide 7, across the upwelling.

We then had R/V ACANIA tow a 1000-Hz source at a depth of 100 m through
» the sonobuoy pattern along the track shown by the solid line, starting at A.

Signals were received on the aircraft from all sonobuoys and were recorded,
then later processed.
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Upwelling Experiment Acoustic Spectrum
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3 Slide 8

]

) We kept our source level low enough to prevent overloads but still had an
] excellent signal-to-noise ratio, as the spectra of a typical received signal
i in slide 8 shows.

4

X One reason for initially choosing a frequency of 1 kHz was to avoid inter-

- ference from shipping nmoise and you can see that it was not a problem.
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1981 Week Upwelling — Single Profile
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Slide 9

Using the environmental data from the survey, we obtained modeling pre-
dictions as we had done previously. Slide 9 is the ray diagram for a single
profile taken at a receiver site near the beginning of the tow track. Note
that this track is slightly further offshore than the previous one, hence
there is a greater average water depth (1600 m versus 1200 m).

Indicative of the high variability of this region, this slight shift of
track caused a significant propagation change, totally refracted rays. Again,
the limiting ray is of interest. It does not strike the bottom but its ray
bundie, say at 14 nmi, is quite weak and diffuse.
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1881 Weeak Upwelling — Muitiple Profile
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Slide 10

Repeating the modeling with a series of sound-speed profiles across the
upwelling again, we see in slide 10 that the pattern is not greatly changed.
But look at the limiting ray bundle at 14 nmi. There is significant strength-
ening and focusing due to the upwelling.

Unfortunately, this ray diagram also shows that the choice of a 100-m

source depth will not see this ray- bundle. In fact, the propagation loss from
this configuration will be rather unspectacular.
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. Slide 11
The data we received from the sonobuoys were plentiful, consistent, and,
as predicted, unspectacular. In slide 11, data from four different sonobuoys
- are presented; sonobuoy 1, shown at the top, was located at the start of the
. projector run. We have added the appropriate range scale. Sonobuoy 2 was
3 located 2 nmi up the track, sonobuoy 3 was at 4 nmi, and sonobuoy 4 was at
6 nmi.
§' ’ You can see the sound-pressure level reach its peak as the source consec-
b utively passes by each sonobuoy.

The data gap for all sonobuoys at time 2300 hr is due to having to change
tape on the airplane's recorder.

a¥s 2

In general, there are level increases at 4 and 24 nmi as particular
groups of bottom-reflected rays reach 100 m.

- P

LY

- 11

et AT At e m e e " A e St
PPN AT N PR Ty Ny

NPT P '1‘:44_“ IPRET WY W Wt TP T ST -'..l




fra Yo fuee o e iiue oo s fhee S A Be- i Sl AR gl gt Rariu LA C L Vi N A RN O |

/:ﬁ.‘“ ic

TD 6737

BRI Y S,
WL R L

Range Along Track (nm)
[ 8 10 12 14 16

T T T T T T I
1“ ¢ ..u'..
L4 O o
oo FAR " ®e ..-

” * s Ne )

LI ., .. L

‘3: l.':n . *e o -.'-.' % e ® oo e * 5

u «’ e 'l,’:: tee "% oo -. .'o.‘.'c N

1
L)
. o 0
) . > o 0
R I N . g O &
o™ ceete, . -.-~ P . s & .....‘,....0..-...‘ .
.. . o n . * e, ..0' o **
. o
: ) ‘ * %S 'y s .o
®

C
(XN

e ]

4 e
4 A |

) u'.“
X731 Y

[}
Buoy Number

af gty iR

4

Measured Sound Pressure Level in dB Re 1 pPa at 1 kHz

Time (GMT) 14 September, 1961

dh 56
kn s A A

Slide 12

Sonobuoy S5 is located at the other end of the track (slide 12); so its
data are a mirror image of those from sonobuoy 1, located at the beginning.

R e

Sonobuoy 6 is 2 nmi further out; so the source did not make it that far
but we do see better the signal increase that occurs at a range of 14 nmi.

o
“al.i

0 Sonobuoy 7 was located opposite to sonobuoy 1 at the beginning of the
track; so the data should be essentially the same, which they are.
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N CONCLUSIONS ON UPWELLINGS

OCEANOGRAPHIC

e- N ® STRONG HORIZONTAL TEMPERATURE GRADIENTS

L ® PREDICTABLE LOCATIONS

2

ol v ® BOTTOM TOPOGRAPHY IMPORTANT
L4 ©® TIME DEPENDENT INTENSITY AND DEPTH (DAYS)

7
]
-~ Slide 13

:' From what we have learned about upwellings to date, what conclusions can
i be made?

{“ Oceanographers have obtained a significant amount of data on upwellings
" and, we feel, would agree with us on the following points (slide 13):

W '

G
Tﬁ' 1. Upwellings can produce strong horizontal temperature gradients;

¥
;:: 2. Certain locations favor the formation of upwellings;

i 3. Bottom topography is a factor in determining these locations; and
)
o 4. There is seasonal variability in the occurrence of upwellings and
e day-to-day variability in an upwelling when it is formed.
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CONCLUSIONS ON UPWELLINGS

ACOUSTIC
© SMALL REFRACTION EFFECTS

© EFFECTS MAGNIFIED BY SLOPING BOTTOM
® GREATEST EFFECTS ON CAUSTICS

© SOURCE/RECEIVER AND UPWELLING DEPTH CRITICAL <

® COMPARISON OF THEORY/MEASUREMENT DIFFICULT
= TIME VARIABILITY OF UPWELLING
~— ACOUSTIC MODELING PRECISION

OTHER ACOUSTIC EFFECTS
® DESTROY SURFACE DUCT MODE
® MODIFIES CONVERGENCE ZONE MODE

Slide 14
Regarding acoustic effects, we believe we can offer some conclusions from
the limited amount of modeling and measurements we have done so far (slide 14):
1. Refraction effects are small but can be relatively significant;
2. Such effects can be enhanced by the bottom slope;
3. The greatest effect appears to be a caustic region;

4. Source, receiver, and water depth are critical to create effects or
avoid them; and

5. High spatial and temporal variability of coastal upwelling regions
challenges modeling capabilities. !

Finally, two other points from other investigators are worth mentioning:
1. Strong upwellings can destroy surface channels; and

2. Upwellings can modify convergence-zone propagation.
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